Thank you for inviting COSI on Wheels into your school! To enhance your students' experience, we encourage you to continue to explore the basics of energy in your classroom or home. # **Extension Activities:** - Kinetic Art - Snake - Blowin' in the Wind - Rollin' Rollin' Rollin' - Plan It for the Planet - Booklist # **Kinetic Art** ACADEMIC STANDARDS: Science and Technology 1.2, 1.7, 1.8, 3.5; Physical Science 3.4 **OBJECTIVE:** To design and construct a working water wheel. #### **MATERIALS:** Pop bottle (2 Liter) Scissors Screwdriver Wooden skewers or dowel rods Cake pan Pitcher Large nail Margarine tub lids Poster board or card stock Knife Crayons or markers Tape or glue Funnel Cork Hammer #### PROCEDURE: - 1. Teachers, cut the bottom off the pop bottle so that it sits flat. - 2. Punch two holes opposite each other midway up on the bottle with the screwdriver. Make sure the holes are large enough for the skewers to fit. - 3. The skewer should fit in the holes with little friction and turn easily. - 4. Have students draw patterns for the water wheel blades on paper, and decide what pattern they want to use. - 5. Make sure that your blades will fit inside of the bottle when attached to the cork. - 6. Students, cut the blades from the margarine lids following the pattern chosen. - 7. The teacher will want to make a hole through the center of the cork with the large nail and the hammer. 8. Cut four slits in the cork at even intervals. (The Sample Blade Designs teacher may need to help with this part). Insert the blades into the slits. # Kinetic Art (continued) 9. Slide the skewer through one side of the bottle, through the center of cork, and then through the other side of the bottle. 10. Set the bottle in the pan and pour water through the funnel into the bottle. 11. Students should design and test different blades for their water wheel to see what blade designs and placements work the best. **What Happened:** How many times did your water wheel design change? Did everyone's water wheel work the same? Did they all run at the same speed? Hydroelectric power uses the gravitational potential energy of water in a reservoir to create electricity. The reservoir is higher than the river flowing away from the dam, which means the reservoir water has more gravitational potential energy. As water is released from the reservoir through the dam, it falls, converting its potential energy into kinetic energy. Some of that kinetic energy is used to spin turbines, which turn generators, which produce electricity. In this experiment the water in the pitcher has *potential energy* when you hold it over the funnel. Pouring the water turns the potential energy into *kinetic energy*. The blades in the bottle use this kinetic energy to spin the cork and skewer. # SNAKE1 **ACADEMIC STANDARDS:** Physical Science; K-2 C, 3-5 D & 3-5F **OBJECTIVE:** To understand the transfer of heat energy to motion. **MATERIALS:** Pencil & crayons or markers Card stock Scissors Black poster board Tape Yarn or string Hole-punch Mug or pot of hot water ## **PROCEDURE:** - 1. Draw a snake on a piece of card stock large enough to fill the entire card stock. - 2. Custom design and color your snake. - 3. Cut out the snake and punch a hole in the center of its head. - 4. Attach yarn or string through the hole and hang the snake in a place where wind won't make it move or spin. - 5. Heat up a pot of water (not to boiling point). - 6. Hold the hot water under the snake and observe what happens. - 7. Make a solar tower with black poster board. Fold the poster board in thirds and tape it into a triangle with the black on the outside. - 8. Cut a two-inch door in the bottom of one of the sides. - 9. Place the triangle in the sun, hang the snake over it, and observe what happens. **WHAT HAPPENED:** What made the snake spin? In what direction did it spin? What could you do to the snake to make it spin the other direction? What would happen if you positioned the snake farther away from the water or solar tower? Because the gas molecules in hot air are moving more rapidly and are more spread out than the molecules in cold air, the hotter air is less dense and rises above the cooler air. As the hot air rises through the snake it presses on the bottom, causing the snake to turn. If the snake were flipped over it would twist in the other direction. A hole cut in the bottom of the solar tower provides airflow. If there were no hole in the bottom, cool air would be trying to go down into the tower at the same time the hot air was trying to get out. The black color of the tower allows it to absorb more of the heat energy from the sun. ¹ Sunny Snakes: Experimenting with Energy, Alan Ward # Blowin' In The Wind² Academic Standards: Physical Sciences K.4, K.5, 1.6, 1.9 Scientific Inquiry K.10, 3.5, 5.3 **Objective:** To create an anemometer to indicate the speed of the wind. #### **Materials:** Scissors 4 small paper Dixie cups 2 strips of stiff corrugated cardboard (1-2" wide) Marker Ruler Stapler Push Pin Unsharpened Pencil with eraser on end Modeling Clay ## **Procedure:** 1. Cut the rolled edges off the paper cups to make them lighter. 2. Color the outside of one paper cup with the marker. - 3. Cross the cardboard strips so they make a plus (+) sign. Staple them together. - 4. Take the ruler and pencil and draw lines from the outside corners of where the cardboard strips come together to the opposite corners. Where the pencil lines cross will be the exact middle of the cross. - 5. Staple the cups to the ends of the cardboard strips. MAKE SURE they all point the same direction. - 6. Push the pin through the center of the cardboard (where the pencil lines cross) and attach the cross with the cups on it to the eraser point of the pencil. Blow on the device to make sure it spins. - 7. Place the modeling clay on the base of the pencil so it stands straight. - 8. Place the Anemometer outside on a base to watch changes! ² http://www.energyguest.ca.gov/projects/anemometer.html # Blowin' In The Wind (continued) **What Happened:** Wind is air in motion. The uneven heating of the earth's surface by the sun produces wind. The air over land heats more quickly than the air over water. The hot air rises and cool air moves in to take the place of the hot air – wind in motion. This is how the sun makes the wind blow. The wind moves the cups around the anemometer which simulates the effects of a wind turbine. The anemometers can give scientists an idea of how fast the wind is blowing. You can test changes in wind patterns by watching at different times of day, or placing it in different areas and elevations outside. This anemometer cannot tell the wind speed in what we know of as miles per hour, but we can test it by watching the revolutions, or turns, to see how fast the wind blows. Count the number of times the colored cup moves around in an entire circle in one minute, using the watch. This will give you the number of revolutions per minute. A Meteorologist will use this idea to convert wind speed into miles per hour. Wind speed is important for wind turbines. It takes the turbines 14 mph of constant wind to generate any electricity. See if the anemometer changes in a windier spot outside. Do trees or buildings blocking the wind affect the amount of wind speed? # Rollin' Rollin' Rollin'³ ACADEMIC STANDARDS: Physical Sciences K.4, K.5, 1.6, 3.3, 3.4 **OBJECTIVE**: To understand and observe the difference between potential and kinetic energy and the different amount of work done by each MATERIALS: Three (3) marbles of different sizes Inclined Plane Ruler Milk Carton #### PROCEDURE: Set up inclined plane and place the bottom section of a milk carton at the bottom of the ramp. This will be used to measure the distance that the marble moves the carton. - 2. Set marbles on top of the ramp. What kind of energy is being used now? - 3. Decide which marble has the most potential energy. - 4. Hypothesize how many centimeters each marble will move the carton. - 5. Roll each marble down the inclined plane and find the distance the marble's energy moved the carton. - 6. Try different heights, different drops, and different planes to see other outcomes. Try other sizes of marbles with this activity. Also, try other round objects; such as a high bounce ball, a grape, or a softball. Have students continue to hypothesize which objects will have the most kinetic energy. This is a very open-ended activity. Students and teachers may extend this project to many levels and many test scenarios for energy. Feel free to encourage students to take this a step further. ³ http://www.ofcn.org/cyber.serv/academy/ace/sci/cecsci/cecsci187.html # Plan It for the Planet⁴ **ACADEMIC STANDARD**: Earth and Space Sciences 1.2, 5.6 **OBJECTIVES**: To interview family and gather data about how we care for the earth in our homes, communities, and schools. #### MATERIALS: Plan it for the Planet Worksheet (next page) Pencil Time to talk to family #### PROCEDURE: - 1. Collect data about how we are currently protecting or hurting our planet by using the sheet attached. - 2. Observe answers that compare/contrast to others, or answers that were surprising. - 3. When the activity is completed, think of one habit/act that can change in the home/school/community to help the planet stay clean. - 4. The results may be graphed to compare individual data. **WHAT HAPPENED:** By collecting this data, students not only have a chance to interview and survey, but they are collecting data and measure it. Also, students and their families can use the data to guide them to become an earth friendly family. In this, the student can become the teacher, and show the family ways to help the Earth. ⁴ http://www.hobart.k12.in.us/hedge/frogs/survey.html # Plan It for the Planet INTERVIEW SHEET | 1. | Do you recycle newspaper, junk mail, and used computer paper?
YES- add 10 pts. | | |-----|---|--| | 2. | If you picked up litter in the last week- ADD 5 pts. If you littered in the last week- SUBTRACT 20 pts. | | | 3. | Did you plant a tree in the last year? YES- add 10 pts | | | 4. | If you drove your car to a place less than two blocks away in the Last week, SUBTRACT 20 pts. | | | 5. | If you recycle aluminum cans or aluminum foils—ADD 10 pts. | | | 6. | If you have a compost pile ADD 10 pts. | | | 7. | If you have a family vegetable garden- ADD 10 pts | | | 8. | If you have forgotten to turn off a light, TV, or radio in an empty Room today SUBTRACT 10 pts. | | | 9. | If you have used a product in a foam container this week, SUBTRACT 10 pts. | | | 10. | If you use both sides of a paper before throwing it away. ADD 5 pts. | | | 11. | If you recycle glass and plastic. ADD 10 pts. | | | 12. | If you have volunteered for an environmental cause in the last year, ADD 10 pts. | | | | TOTAL: | | - 90+ points: You are an Earth-friendly family! - 80-89: You are a concerned family and doing well - 70-79: Your family can make plans to help the Earth! Try recycling! - Below 69: Your family needs to help stop the problem! Talk to your teacher about ways to recycle and help save the Earth! # **Energy (Grades K-6)** Books at the Columbus Metropolitan Library, 96 South Grant Ave. #### PICTURE BOOKS When Charlie McButton Lost Power by Suzanne Collins, 2004 Picture Book COLLINS A boy who likes nothing but playing computer games is in trouble when the power goes out and his little sister has all of the batteries in the house. Miss Fox's Class Goes Green by Eileen Spinelli, 2009. Picture Book SPINELLI The students in Miss Fox's class help keep the planet healthy by turning off lights when leaving a room, taking shorter showers, and using cloth bags instead of plastic ones. #### **NONFICTION** Energy by Chris Woodford, 2007. j333.79 W887e This book covers everything from temperature to food, nuclear and solar power, fossil fuels, propulsion, and other related topics. Why Should I Save Energy? By Jen Green, 2005. j333.7916 G796w A power outage gives Robert the opportunity he needs to teach his friend and her family about the limited sources of energy, what would happen if energy supplies ran out, and some of the ways in which they can all help conserve energy. Energy Makes Things Happen by Kimberly Bradley, 2003. i531.6 B811e Different forms of energy are explained in this simple, fun activity book that encourages budding scientists to conduct their own experiments. Excited About Energy by Nadia Higgins, 2009. j531.6 636e This book explains the different types of energy and explores the sun, fuel, how energy changes, and other related topics. What is Energy? by Richard Spilsbury, 2008. j621.042078 S756w Packed with fun activities, this book explores what energy is, as well as the different types of energy such as heat, electricity, and more.